

¹⁸F-FDG PET/CT in the Diagnosis and Staging of Breast Cancer

David Groheux, Elif Hindié, Marc Espié

Diagnosis of Breast cancer:

Is PET(/CT) useful?

Breast lesions screening

References	Nb patientes	sensitivity	Specificity	Accuracy
Adler 1993	28	96%	100%	~~
Dehdashti 1995	32	88%	100%	91%
Avril 1996	72	83%	84%	83%
Palmedo 1997	20	92%	86%	90%
Hubner 2000	35	96%	91%	94%
Yutani 2000	40	79%	~~	80%
Schirrmeister 2001	117	93%	75%	89%
Samson 2002 [1]	606	88%	79%	~~
Heinisch 2003	36	68%	~~	~~
Kumar 2006 [2]	111	48%	97%	61%

^[1] Should FDG PET be used to decide whether a patient with an abnormal mammogram or breast finding at physical examination should undergo biopsy? Samson DJ Acad Radiol 2002;9:773-83.

^[2] Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Kumar R, et al. Breast Cancer Res Treat. 2006;98:267-74.

Correlation of high ¹⁸F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer

David Groheux • Sylvie Giacchetti • Jean-Luc Moretti • Raphael Porcher •

Marc Espié • Jacqueline Lehmann-Che • Anne de Roquancourt • Anne-Sophie Hamy •

Caroline Cuvier • Laetitia Vercellino • Elif Hindié

Eur J Nucl Med Mol Imaging 2011;38:426-35.

- Prospective study
- 132 consecutive patients with a large (>2cm) and/or locally advanced breast cancer.
- 18F-FDG PET-CT examination was performed before starting neoadjuvant chemotherapy.

Results: Univariate analysis

Variables		%	Median SUVmax	P-value
Menopaused	No	54	6.7	0.008
	Yes	46	5.5	
T-Stage	T2	44	6.3	0.073
	T3	28	5.3	
	T4	28	7.6	
Node status	N0	31	5.7	0.43
	N1, N2, N3	69	6.6	
Histology	IDC	82	6.6	<0.0001
	ILC	11	3.4	
	metaplastic	5	12.9	

Univariate analysis (continue)

Variables		%	Median SUVmax	P-value
Histological grade	1-2	59	4.8	<0.0001
	3	41	9.7	
ER	-	38	7.6	0.003
	+	62	5.5	
PR	-	64	7.0	0.003
	+	36	5.2	
c-erbB2	-	82	6.2	0.76
	+	18	6.7	
Triple negativity	TN	27	9.2	0.0005
	non-TN	73	5.8	
p53	Wild type	54	5.0	<0.0001
	Mutated	46	7.8	

Patient 21. 53 years old, IDC, 52mm, SBR1, ER +++, PR +++, c-erbB2-, p53 wild type, SUV max: 2.5

Patient 10. 64 years old, IDC, 52mm, SBR 3, triple negative, mutated p53, SUV max: 12.9

PET and Diagnosis: Conclusions

- Low FDG uptake:
- 1- « small » lesion (<1-2cm)
- 2-DCIS, ILC
- 3- Biochemical and biological tumor characteristics (low grade, low proliferation, well-differentiated œstrogene-positive tumors...)
- ⇒Whole body PET/CT is not indicated for breast cancer diagnosis.
- In the future : PEM ?

Initial Work-up

Stage I Breast Cancer

Axillary Staging

Study	Year	No. of Patients	Sensitivity (%)	Specificity (%)	Positive Predictive Value (%)	Negative Predictive Value (%)
Veronesi et al ^{15*}	2006	236	37	96	88	66
Gil-Rendo et al ^{16*}	2006	245	84.5	98.5	98.4	95.6
Chung et al ^{18*}	2006	51	60	100	(/)	
Kumar et al ^{19*}	2005	80	44	95	5_5	2
Zornoza et al ²⁰ *	2004	200	84	98	62	79
Lovrics et al21*	2004	80	40	97	90	78
Fahr et al ²²	2004	24	20	93	67	62
Wahl et al ²³	2004	360	61	80	62	99
Barranger et al ²⁴ *	2003	32	20	100	; - -;	
an der Hoeven et al ²⁵ *	2002	70	25	97	63	95
Guller et al ²⁶ *	2002	31	43	94	86	67
Kelemen et al ^{27*}	2002	15	20	90	50	69
Yang et al ²⁸	2001	18	50	100		-
Schirrmeister et al ¹⁷	2001	117	79	93	82	79
Greco et al ¹⁴	2001	167	94	86	84	95
Yutani et al ²⁹	2000	38	50	100	100	100
Crippa et al ³⁰	1998	72	85	91	S-20	period to
Noh et al ³¹	1998	27	93	100		
Smith et al ¹³	1998	50	90	97	95	95
Crippa et al ¹²	1997	82	84	85		

^{*}These studies included a comparison with sentinel lymph node biopsy.

Hodgson et al. J Clin Oncol. 2008 Feb 10;26(5):712-20.

original article

A comparative study on the value of FDG-PET and sentinel node biopsy to identify occult axillary metastases

U. Veronesi^{1,3}*, C. De Cicco², V. E. Galimberti³, J. R. Fernandez³, N. Rotmensz⁴, G. Viale^{5,6}, G. Spano⁷, A. Luini^{3,6}, M. Intra³, P. Veronesi^{3,6}, A. Berrettini³ & G. Paganelli²

236 patients with clinically negative axilla => Axillary Clearance when Sentinel lymph nodes or PET were positive

=> 103 N+ (44%)

Se PET: 37% SNB: 96%

Sp PET: 96% SNB: 100%

Initial Work-up: Stage I Breast Cancer

- FDG PET/CT has no indication:
- Performances of PET/CT << SNB
- Group with low risk of distant metastases and potential risk of false-positive PET-findings

Initial Work-up

Locally Advanced and inflammatory Breast Cancer

18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) Imaging in the Staging and Prognosis of Inflammatory Breast Cancer

Jean-Louis Alberini, MD^{1,6}; Florence Lerebours, MD, PhD²; Myriam Wartski, MD¹; Emmanuelle Fourme, MD³; Elise Le Stanc, MD⁴; E. Gontier, MD¹; O. Madar, PD¹; P. Cherel, MD⁵; and A. P. Pecking, MD¹

Cancer

November 1, 2009

- 62 patients with inflammatory cancer
- Primary Tumor: Se PET/CT=100%
- Extra-axillary lymph nodes evidenced in 33 patients with PET/CT vs 5 with clinical examination.
- Distant metastases detected in 18 patients (vs 6 with conventional imaging)

Saint Louis Hospital Experience between 2006-2011

LABC was defined as a T4 primary tumor and/or a N2 or N3 lymph node disease according to the AJCC V7 classification

	Non inflammatory LABC	Inflammatory Breast Cancer	Whole population
n Patients (%)	82 (70)	35 (30)	117 (100)
Overall stage modifications* (%)	39 (48)	22 (63)	61 (52)
Lymph nodes** outside Level-I and Level-II axilla	27 (33)	22(63)	49(42)
- IM involvement	12 (15)	10 (28)	22 (19)
- Infra-clavicular	19 (23)	15 (43)	34 (29)
- Supra-clavicular	13 (16)	13 (37)	26 (22)
Distant metastases***	27 (33)	16 (46)	43 (37)
- Bone metastases	20 (24)	10 (29)	30 (26)
- Lung metastases	3 (4)	3 (9)	6 (5)
- Pleura	2 (2)	0	2 (2)
- Distant lymph nodes [†]	11 (13)	8 (23)	19 (7)
- Liver metastases	6 (7)	4 (11)	10 (8)
2 nd cancer	0	2	2

Findings with ¹⁸FDG-PET/CT in three different groups: non inflammatory LABC, inflammatory carcinoma, and the whole population. Results expressed per patient basis

Saint Louis Hospital Experience between 2006-2011

Saint Louis Hospital Experience between 2006-2011

Kaplan-Meier Disease-specific Survival for 104 patients with recent follow-up.

Initial Work-up

Is there a role for PET/CT between Stage I and Inflammatory Breast Cancer?

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Preoperative Staging of Large Primary Breast Cancer With [18F]Fluorodeoxyglucose Positron Emission Tomography/ Computed Tomography Compared With Conventional Imaging Procedures

David Fuster, Joan Duch, Pilar Paredes, Martin Velasco, Montserrat Muñoz, Gorane Santamaria, Montserrat Fontanillas, and Francesca Pons

- **60 Patients** (T > 3cm)
- Staging Modification for 42 % of patients
- Extra-axillary lymph nodes: 3 patients
- Distant metastases: Se PET = 100% (60% for CI)

Sp PET = 98% (83% for CI)

CI: Conventional Imaging

The Yield of ¹⁸FDG-PET/CT in Patients with Clinical Stage IIA, IIB, or IIIA Breast Cancer: A Prospective Study

David Groheux^{1,2}, Sylvie Giacchetti³, Marc Espié³, Laetitia Vercellino¹, Anne-Sophie Hamy³, Marc Delord⁴, Nathalie Berenger¹, Marie-Elisabeth Toubert¹, Jean-Louis Misset³, and Elif Hindié^{1,2}

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 52 • No. 10 • October 2011

⇒ Study assessing the yield of PET/CT for initial work-up of 131 breast cancer patients clinically stage IIA, IIB or IIIA

Consecutive patients with breast cancer examined at the breast disease unit of Saint-Louis hospital from Mai 2006 to December 2010

History and physical examination, mammography, breast and axilla US, breast MRI

131 Patients classified Stages IIA-IIB-IIIA:

- 36 Stage IIA (2 T1 N1, 34 T2 N0)
- 48 Stage IIB (28 T2 N1, 20 T3 N0)
- 47 Stage IIIA (9 T2 N2, 29 T3 N1 and 9 T3 N2)

18F-FDG PET/CT workup

Conventional Imaging workup (chest examination by radiography and/or CT, abdomino-pelvic examination by US and/or CT, and bone scan)

The Yield of 18FDG-PET/CT in Patients with Clinical Stage IIA, IIB, or IIIA Breast Cancer: A Prospective Study.

- \Rightarrow No difference in the yield between stage IIB (T3 N0, T2 N1) and T3 N1 of stage IIIA (7/48 vs 3/29; p=0.739).
- \Rightarrow Staging modifications for 5.5% (2/36) in the stage IIA group, 13% (10/77) in the stage IIB + T3 N1 group and 56% (10/18) in the stage IIIA group with N2 disease (P < 0.0001).
- \Rightarrow Accuracy: PET-CT > Bone scan (P = 0.036).

Conclusions

- Diagnosis of malignancy: PET/CT is not indicated
- Stage I Breast Cancer Staging: No role for PET/CT; SNB >> FDG-PET/CT
- Stage III locally advanced and inflammatory breast cancer: Recognized role for PET/CT
- Stage IIB (T2N1, T3N0) and T3 N1 breast cancer: A new emerging role for PET/CT

• Thank you for your attention